CM30 涂层测厚仪

使用说明书

1 概述	1
1.1 仪器的组成	2
1.2 技术参数	3
1.3 测量参数	4
1.4 标准配置	5
1.5 选购件	5
2 仪器的使用	6
2.1 启动	6
2.2 连接探头	6
2.3 测量方法及注意事项	6
2.4 测量界面	7
2.5 测量界面删除测量值	9
2.6 仪器校准	9
2.7 参数配置	13
2.8 文件管理	14
2.9 开机设置	16
2.10 通讯功能	24
3 影响测量精度的因素	25
4 保养与维修	26
4.1 环境要求	26
4.2 更换电池	26
4.3 仪器维修	26

目录

1 概述

我公司研制并生产的 CM30 系列彩屏涂层测厚仪采用磁性/涡流测量 原理,测量磁性金属基体上的非磁性涂层或非磁性金属基体上的非导电覆 层。CM30 系列采用全新的金属外壳,外壳经过 CNC 精密机械加工及阳 极氧化处理,并配以不锈钢上下盖。仪器从机身到接插件均做防水密封处 理,完全符合 IP68 防水防尘标准。

本仪器可广泛应用于制造业、金属加工业、航天航空、铁路运输、化工业、商检业等检测领域,是无损检测行业的必备仪器。

本仪器符合以下标准:

GB/T 4956—2003 磁性基体上非磁性覆盖层 覆盖层厚度测量 磁性 法

GB/T 4957—2003 非磁性基体金属上非导电覆盖层 覆盖层厚度测量 涡流法

JB/T 8393-1996 磁性和涡流式覆层厚度测量仪

JJG 818-2005 磁性、电涡流式覆层厚度测量仪

GB/T 4208-2017 外壳防护等级(IP 代码)

^{1.1} 仪器的组成

1.2 技术参数

显示屏	显示屏 2.4 寸 (320×240) IPS 彩色液晶屏	
工作原理	磁性/涡流	
单位	公制/英制	
分辨率	高/低(仅公制模式下)	
语言	中文/英文	
统计数据 测量值个数、平均值、最大值、最小值、标准偏差、变异		
校准方式	零点调整、一点校准、两点校准	
文件数	200	
存储数	200,000	
背光	6 档可调	
关机 3分钟无操作后自动关机或只能手动关机		
通讯 通讯软件(USB 传输)		
显示模式 大数值模式,统计界面模式,趋势图模式		
防护等级	IP68	
电源	2节1.5VAA 电池	
操作时间	20 小时	
使用环境 -10至+50℃ 无强磁场环境		
尺寸	121.5mm*63.5mm*31.5mm	
重量	317g(不含探头和电池)	
保修 1年		

1.3 测量参数

仪器型号		CM30F	CM30N	CM30FH	CM30FN
探头型号		F3	N2	F10	FN1.5
工作原理		磁感应	电涡流	磁感应	磁感应/ 电涡流
测量	范围(µm)	0~3000	0~2000	0~10000	0~1500
低限	艮分辨力 (μm)	0.1	0.1	0.1	0.1
示值	误差(μm)	±(2%H+2)	±(2%H+2)	±(2%H+10)	±(2%H+2)
测	最小曲率 半径(凸)	5	5	10	5
讯 条 <u></u>	最小面积 直径	Ф20	Ф20	Ф40	Ф20
IT (mm)	基体临界 厚度	0.5	0.5	2	0.5

表 1.2 测量参数表

表 1.1 技术参数表

1.4 标准配置

型号	CM30F	CM30N	CM30FH	CM30FN
主机	1 台			
探头	1条			
校零板(块)	Fe×1	Fe×l+Al×1		
校准用厚度片	5 片			
碱性电池	2节(5号)			
USB 通讯线	1条			
通讯光盘	1 张			
说明书文件	1 套			
仪器密封箱	1 个			

表 1.3 标准配置表

1.5 选购件

探头(含校准片)	F3	N2	FN1.5	F10
校零板(块)	铁基调零板、铝基调零板			
校准用厚度片	多种厚度可选			

表 1.4 选购件表

2 仪器的使用

2.1 启动

- 若仪器启动前已连接探头,先保持探头远离被测物。
- 按下"ON"键直到仪器屏幕显示"Coating Thickness Gauge"以及当前 仪器版本号,仪器开启。
- 若仪器启动前已连接探头,仪器开启后进入测量界面。
- 若仪器启动前未连接探头,仪器屏幕会跳转到提示探头未连接,此时 按下"返回"对应的▲键可对仪器进行无探头操作。

2.2 连接探头

将正确的探头插头的红点标志与仪器顶部插槽的红点标志对齐插入, 若探头插入前仪器处于开启状态,仪器检测到探头接入后提示探头已连接, 按"返回"对应的▲键返回至测量界面,若仪器处于参数配置或文件管理 界面,用户需先退出这两个界面,仪器才识别探头接入。

仪器可选配多种探头,测量前请确认使用探头型号和仪器设置探头型 号保持一致。如有需要可进入"开机设置"菜单进行探头配置。具体操 作方法参照 2.9.1。

2.3 测量方法及注意事项

- 握住探头外壳靠近头部一端。
- 探头垂直落于被测物表面,直到仪器屏幕出现数值。
- 建议探头每次抬离被测物表面高度 5cm 以上最佳。

- 若探头置于被测物表面长时间不出现读数,可抬起探头重新测量,或 重启仪器。
- 仪器测量界面下部有探头测量状态指示图标,指示探头处于测量被测物表面(高亮白色)或是探头抬起(灰色)状态,见下图

上 冬 图 2.1 探头状态图

2.4 测量界面

仪器有三种测量界面,分别是大数值界面、统计界面以及趋势图界面, 可通过按"视图"对应的▲键循环切换,界面图及说明见下图。

图 2.2 大数值测量界面

图 2.4 趋势图测量界面

2.5 测量界面删除测量值

仪器开机使用过程中,由于测量位置错误或环境干扰等因素出现错误
的测量值时,可按仪器 ↑ 键删除屏幕上的数值。仪器存储功能关闭时,
长按 ↑ 键 3s 左右可根据提示删除所有未存储的测量值及统计值。

2.6 仪器校准

在使用涂层测厚仪测量之前,需要对仪器进行校准,可通过按"CAL" 键进入校准菜单。校准的目的是使探头与被测工件匹配,测量某一点附近 或某一范围内更精准。

2.6.1 零点调整

利用无涂、覆层的被测工件或与被测工件形状、结构相似的工件,对探头调零。

进入零点调整模式,屏幕左上角显示"ZERO:--"同时测量区域显示 "---"表示可以进行调零操作,此时屏幕左下角并未显示"调零"功能。 探头每次平稳的落到被测工件上,仪器屏幕出现数值,为1次调零动 作,屏幕左上方会同步显示当前调零次数(见下图),调零次数最多为10 次。按下"调零"对应的▲键,完成零点调整,在测量界面显示 ZERO 图标。

2.6.2 一点校准

利用无涂、覆层的被测工件或与被测工件形状、结构相似的工件测量标准试片厚度,并调整仪器数值与标准试片相同或接近。

进入一点校准模式, 仪器会请求先执行零点调整程序, 用户可根据需 求选择是否调零, 若执行零点调整, 方法同 2.6.1, 若不执行, 按下

9

10

"忽略"对应的▲键(见下图),跳过零点调整进入一点校准。

图 2.7 零点调整及一点校准界面

一点校准推荐使用与被测工件涂、覆层厚度接近的标准试片。将标准 试片放置于无涂、覆层的被测工件上,探头每次平稳的落在标准试片上, 仪器屏幕出现数值,为一次测量动作,屏幕左上方会同步显示当前测量次数,测量次数最多为 10 次。然后通过 ↑、↓ 键调整屏幕上的数值至标准试片厚度值,按下"校准"对应的▲键,完成一点校准,在测量界面显示CAL1 图标。

2.6.3 两点校准

在一点校准的基础上,测量与第一点不同厚度的标准试片,并调整仪 器数值与标准试片相同或接近。先校准厚度值较小的试片,再校准厚度值 较大的试片。

进入两点校准模式, 仪器会请求先执行调零程序, 用户可根据需求选择是否调零, 若执行零点调整, 方法同 2.6.1, 若不执行, 按下"忽略" 对应的▲键, 跳过零点调整进入两点校准中的第一点校准, 第一点校准方 法同 2.6.2 的一点校准部分。

完成第一点校准后进入两点校准中的第二点校准,此时屏幕左上角显示"CAL2:--",将厚度值较大的标准试片放置于无涂、覆层的被测工件上,探头每次平稳的落在标准试片上,仪器屏幕出现数值,为一次测量动作, 屏幕左上方会同步显示当前测量次数,测量次数最多为10次。然后通过个、 ↓键调整屏幕上的数值至标准试片厚度值,按下"校准"对应的▲键, 完成两点校准,在测量界面显示 CAL2 图标。

2.6.4 删除校准数据

删除仪器内当前探头的所有校准数据。

11

2.7 参数配置

按"MODE"键屏幕显示参数配置界面,在此界面中有多项参数调节选项,包括工作模式(仪器设置探头类型为FN 探头时有此选项),单位、分辨率、上限、下限、语言、背光、自动关机、恢复出厂设置,参照下图。

参数	配置	1 拉"WODD"按目二会粉配贸用而
工作模式	F	1.按 MODE 键並小参数配直介面
单位	公制	2. 通过 🕈 、 🖌 键调整选项光标位置
分辨率	高	3. 按"选择"对应的按键激活参数
上限	0	
下限	0	4. 按 🕈 、↓ 键调节参数
语言	中文	5. 按下"返回"对应的▲键完成参数配置
背光	100%	
自动关机	开	6. 按"MODE"键退出参数配置界面
恢复出厂设置		
选择		

- 语言:设置仪器屏幕显示语言
- 背光:6档,分别为自动、100%、80%、60%、40%、20%,自动背光条件下,仪器默认100%背光亮度,30秒无操作后背光亮度自动调整至5%,操作仪器任意按键或探头测值可恢复背光亮度。

下限:设置最小厚度报警值,当实测值小于下限值,测量数据用红色

- 自动关机:无操作3分钟后自动关机或只能手动关机
- 重置:恢复仪器出厂时默认设置

2.8 文件管理

字体

字体

按下"文件"对应的▲键屏幕显示文件管理界面,见下图。通过按↑、↓ 键调整选项条,按下"选择"对应的▲键设置当前选项或进入选项。

文件管理			
存储功能	开		
文件编号	001		
查看文件			
清空当前文件			
清空所有文件			
选择	返回		

图 2.9 文件管理菜单

 存储功能:设置存储的开启与关闭。当存储功能处于开启状态时,测 量值会自动存储到对应的文件当中。

图 2.8 参数配置界面

- 工作模式(仪器设置探头类型为 FN 探头时有此选项):设置当前探头的工作模式(F 或 N)
- 单位:设置测量单位为公制或英制
- 分辨率(仅公制模式下):设置测试精度,见下表

	范围 分辨力	0~999µm			>=1mm	
	百公並力	0~99.9	μm	1	00~999µm	
	同分别力	0.1µr	n	1µm		0.01mm
	化八脑力	0~200µm	200~5	00µm	500~999µm	0.0111111
		1µm	2µ:	m	5µm	
表 2.1 分辨力表						

● 上限:设置最大厚度报警值,当实测值大于上限值,测量数据用红色

- 文件编号:设置测量值存储位置,编号从 001 到 200,可在选中后通
 过↑、↓键切换文件编号,长按↑、↓键可快速切换。
- 查看文件:查看当前文件的数据,包括统计数据及测量值,可通过↑、
 ↓键翻页查看,见下图。首页为统计数据,包含测量值个数,最大值, 最小值,平均值,标准偏差及变异系数。其余页为测量值查看页,屏
 幕右上角的编号为当前页所显示的测量值顺序号,序号列 A-T 为当前页所显示测量值的顺序。

统计数据]	FILE:	001		0001-0020
		-	序号	测量值	序号	测量值
FILE:001			А	47.7um	К	
NUM	10		В	47.7um	L	
		-	С	48.8um	м	
MAX (um)	48.8		D	47.7um	N	
MIN (um)	17 1	1	Е	48.8um	0	
IVI I IN COMP	47.4	-	F	48.8um	Р	
AVG (um)	48.2		G	47.4um	Q	
S D (um)	0.53		Н	48.1um	R	
0.0 (4.1.)	0.00	-	I	48.8um	S	
C.V (um)	1.10		J	48.1um	Т	
	返回	1				返回

图 2.10 统计数据页面

- 清空当前文件:清空当前文件的统计数据及测量值。存储功能关闭时 可清除未存储的测量数据及统计数据。
- 清空所有文件:清空所有文件的统计数据及测量值,清除时间略长, 请耐心等待。

2.9 开机设置

2.9.1 进入"开机 设置"

仪器处于关机状态,按住按键区左侧▲键不放,按一下"ON"键,待 仪器进入"开机设置"菜单(见下图)后松开左侧▲键。

开机设置				
探头型号	探头型号 F3			
语言设置 中文				
用户调试				
工厂调试				
选择	退出			

图 2.11 开机设置

"开机设置"中"探头型号"、"语言设置"及"用户调试"是面向 用户开放使用的。当前界面可通过个、↓键进行选项切换,"选择"对应 的▲键进行当前选项选中。按下"退出"对应的▲键,仪器会退出当前设 置并进入测量使用界面。

2.9.2 探头型号

在"开机设置"界面中,通过个、↓键将选项条选至"探头型号"项, 按下"选择"对应的▲键进入"探头型号"选项(见下图),再通过个、 ↓键切换探头型号,探头型号依次为F3、N2、FN1.5和F10,完成后按 下"返回"对应的▲键,返回至"开机设置"。

开机设置			
探头型号	F3		
语言设置	中文		
用户调试			
工厂调试			
返回			

图 2.12 探头型号设置图

2.9.3 语言设置

在"开机设置"界面中,通过个、↓键将选项条选至"语言设置"项, 按下"选择"对应的▲键进入"语言设置"选 项(见下图),再通过个、↓键切换语言类型,语言包含中文和英文,完 成后按下"返回"对应的▲键,返回至"开机设置"。

2.9.4 用户调试

主要针对用户购买仪器后由于长时间使用仪器,标配探头磨损造成测 值偏差,或用户从厂家单独购买其它型号探头。用户可通过厂家提供的用 户调试软件及说明自行完成探头和仪器的匹配调试。

在"开机设置"界面中,通过个、↓键将选项条选至"用户调试"项, 按下"选择"对应的▲键进入"用户调试"界面(见下图)

用户	用户调试		
输入校准片值			
采集数据			
通信连接			
删除采集数据			
删除所有数据			
工作模式	F		
选择	返回		

图 2.14 用户调试界面图

两种方式向仪器输入要采集数据的校准片标准值,分别是用户调试下 的"输入校准片值"和"通信连接"。"输入校准片值"为手动输入方式, "通信连接"可通过上位机软件进行数据传输。

输入校准片值

选项光标处于"输入校准片值",按"选择"对应的▲键进入手动输入校准片标准值界面,如图 2.15 (左),通过个、↓键来上、下移动光标,

"MODE"及"CAL/ON"键来左右移动光标,按"输入"对应的▲键进行当前光标下标准值的输入、修改或删除。

在标准值输入时,如图 2.15(右),通过**↑**、↓键设定当前位值,"MODE" 及"CAL/ON"键左右移动切换位数,完成后按"返回"对应的▲键保存输 入值或修改值,若按"删除"对应的▲键则删除当前光标下的标准值。

注意: 1.标准值单位为公制微米(µm)

2.标准值 0µm 是默认值,无需输入

[MODE] ← [CAL/ON] → um			[MODE] 🔶 [(CAL/ON] ➡ um		
序号	标准值	序号	标准值	序号	标准值	序号	标准值
1		11		1	00000.0	11	
2		12		2		12	
3		13		3		13	
4		14		4		14	
5		15		5		15	
6		16		6		16	
7		17		7		17	
8		18		8		18	
9		19		9		19	
10		20		10		20	
输入		返回		删除		返回	

图 2.15 输入校准片值图

通信连接

将仪器通过数据线连接至计算机,此时"通信连接"选项由灰色不可 选变为绿色可选项,通过**个、↓**键调至"通信连接"选项,按下"选择" 对应的▲键进入"通信连接"界面(见下图)

图 2.16 通信连接图

计算机端打开用户调试软件,选择串口,输入要采集的标准值个数, 单击确定,然后依次由小到大输入要采集的标准值(见下图),最后单击 发送标准值。数据传输过程中按钮持续为按下状态,待按钮抬起表示传输 结束。

图 2.17 通信软件图

标准值的说明及选择方法(单位为µm):

● 厂家内置标准值为:

0,10,20,50,100,250,500,600,700,800,900,1000,1100,1200,1300,1400, 1500,1600,1700,1800,1900,2000,2200,2500,2800,2900,3000,3500,4000, 4500,5000,5500,6000,6500,7000,7500,8000,8500,9000,9500,10000, 其 中 10 到 250 为举例值,其余为实际采集值。

- F3 探头标准值为 0 到 3000, N2 探头标准值为 0 到 2000, FN1.5 标准值为 0 到 1500, F10 探头标准值为 0 到 10000 (不含 10)。
- 用户选择标准值时不可使用临近的两个值,例如使用 18μm 和 22μm
 的标准片是不允许的,系统判定方式为 15μm ((10+20)/2) 至 35μm
 ((20+50)/2) 间均为 20μm 附近值。
- 选值方法:用户选用的值越多(最多为厂家内置标准值个数),调试
 后的探头测值越精准;用户拥有极少的校准片时,建议都使用
- 假如用户要调试 F3 探头,使用 500,1000,2000 进行调试,只能保证
 0-2000 的测值较为精准,2000-3000 误差可能较大。

若仪器内有标准值数据,"采集数据"选项由灰色不可选变为绿色可选(见下图)

图 2.18

通过↑、↓建调至"采集数据"选项,按下"选择"对应的▲键进入"采集数据"界面(见下图)

F3		<u>+</u>		
序号	标准值	周期	变化	
1	3000		-	
2	2500			
3	2000			
4	1500			
5	1000			
6	500			
7	241			
8	99.5			
9	48.6			
10	0.0			
取消		存储		

图 2.19 采集数据初始图

界面中,右上图标为探头测量状态图标(探头不连接时不显示),指 示探头抬起/落下状态。用户需按仪器"采集数据"界面中序号的顺序进 行数据采集,采集方法是将标准列当前光标选项对应的标准厚度片放置调 零板上,探头测量标准厚度片,当探头测量状态图标为下落状态时,抬起 探头,周期列和变化列随后显示采集到的数据,同时探头状态图标为抬起 状态。然后通过**个、↓**键切换标准值并继续采集数据。

注意:采集完成后周期列的数据值至上到下为由小到大,变化列为由 大到小(变化列允许出现相邻的两个变化值相同,50µm以下标准值对应 的变化列允许出现相邻的两个变化值上比下小的情况)。采集完成如下图 "用户调试"界面中的"删除采集数据"选项可删除所有采集的数据,"删除所有数据"选项可删除存储到仪器中的标准值及采集到的数据。

2.10 通讯功能

通讯功能就是将仪器内已存储好的测量值传送到计算机上。

将 USB 数据线插头的红点标志与仪器底部插槽的红点标志对齐插入

即可。打开上位机通讯软件,点击 Setting-ComPort,选择对应的端口。

单误 图标输入要下载的文件编号,确认即可。

注意:通讯连接必须在仪器测量界面下才可操作!

F3				
序号	标准值	周期	变化	
1	3000	69	-	
2	2500	105	13.9	
3	2000	161	8.93	
4	1500	264	4.85	
5	1000	464	2.50	
6	500	915	1.11	
7	241	1426	0.51	
8	99.5	1916	0.29	
9	48.6	2175	0.20	
10	0.0	2500	0.15	
取消		存储		

图 2.20 采集数据完成图

采集完成后按"存储"对应的▲键存储并退出"采集数据"界面,若

按"取消"则不存储并退出"采集数据"界面。

例

23

3影响测量精度的因素

测量方法 影响因素	磁性方法	涡流方法
基体金属磁性质	\checkmark	
基体金属电性质		\checkmark
基体金属厚度	\checkmark	\checkmark
边缘效应	\checkmark	\checkmark
曲率	\checkmark	\checkmark
试样的变形	\checkmark	\checkmark
表面粗糙度	\checkmark	\checkmark
磁场	\checkmark	_
附着物质	\checkmark	\checkmark
探头压力	\checkmark	\checkmark
探头取向	\checkmark	\checkmark

表 3.1 影响因素相关表 √ :表示有影响

4 保养与维修

4.1 环境要求

严格避免碰撞、重尘、潮湿、强磁场和油污等。

4.2 更换电池

当仪器出现低电压指示时,应尽快跟换电池,方法如下:

1. 按"ON"键关机

- 2. 打开电池舱旋盖
- 3. 取出电池, 放入新电池, 注意极性, 正极朝里
- 4. 拧紧电池舱旋盖

注意:如非特殊情况,不建议在仪器处于开机状态下直接取出电池

4.3 仪器维修

如出现以下问题请与我厂维修部联系:

- 1. 仪器器件损坏,不能测量。
- 2. 显示屏显示不正常。
- 3. 正常使用时,误差过大。
- 4. 键盘操作失灵或混乱

由于本涂层测厚仪为高科技产品,所以维修工作应由受过专业培训的维修 人员完成,请用户不要自行拆卸修理。