1.里氏硬度计测量原理	1
2.仪器及冲击装置图示	2
2.1 仪器图示	2
2.2 D 型冲击装置图示	
2.3 冲击装置类型	4
2.4 冲击装置技术参数	4
2.5 标准配置	6
2.6 选配件	6
3.功能及应用	7
3.1 技术参数	7
3.2 应用范围	
4.试件的测前准备	8
4.1 试件要求	
4.1.1 试件表面粗糙度要求	
4.1.2 试件质量和厚度要求	9
4.1.3 试件表面硬化层厚度	9
4.1.4 曲面测试件的要求	9
4.2 试件的支承	
5.使用与操作	10
5.1 显示图示	
5.2 键盘图示	
5.3 开机	
5.4 参数设置	
5.4.1 设置测试材料	
5.4.2 设置硬度制式	
5.4.3 设置探头类型	
5.4.4 设置冲击方向	
5.4.5 设置冲击次数	
5.5 进行测试	
5.6 显示平均值	

	5.7 存储	者和读取数据	
	5.7.	.1 存储冲击值	14
	5.7.	.2 读取存储值	14
	5.7.	.3 删除存储值	
	5.7.4	.4 存储数据传输	
	5.8 蓝牙	F与打印	
	5.9 校准	È	
6.保	养与维护	۵ 	16
	6.1 清理	裡冲击装置	

1. 里氏硬度计测量原理

通过弹簧力将带有硬金属压头的冲击体推向试样表面,当冲击体撞 击检测表面时会使表面产生变形,这将产生动能的损耗。通过距表面 1mm 处测得的冲击和回弹速度计算出能量损耗。

冲击体内部的永久磁铁在冲击装置的单线圈中产生一个感应电压。 信号的电压与冲击体的速度成正比。

用一定质量的冲击体在弹簧力的作用下冲击试样表面,冲击体距试 样表面 1mm 处的冲击速度和回弹速度之比即表示里氏硬度。利用电磁原 理,冲击体内的永久磁铁在冲击装置的线圈中产生一个感应电压,此电 压与冲击体的速度成正比。公式如下:

HL =1000 \times V_B/V_A

2. 仪器及冲击装置图示

2.1 仪器图示

图 2.1

2.3 冲击装置类型

2.4 冲击装置技术参数

异形冲击装置	D/DC/DL	D+15	С	G	E
冲击能量	11mJ	11mJ	11mJ	11mJ	11mJ
冲击体质量	5.5g/7.2g	7.8g	3. 0g	20.0g	5.5g
球头硬度	1600HV	1600HV	1600HV	1600HV	5000HV
球头直径	3mm	3mm	3mm	5mm	3mm
球头材料	碳化钨	碳化钨	碳化钨	碳化钨	碳化钨
冲击装置直径	20mm	20mm	20mm	30mm	20mm
冲击装置长度	86/147/75mm	162mm	141mm	254mm	155mm
冲击装置重量	50g	80g	75g	250g	80g
试件最大硬度	940HV	940HV	1000HV	650HV	1200HV
试件表面平均粗	1.6µm	1.6µm	0.4 µ m	6.3µm	1.6µm
糙度 Ra:					

试件最小重量:						
可直	接测量	>5kg	>5kg	>1.5kg	>15kg	>5kg
需稳定	定支撑	$2^{\sim}5$ kg	$2^{\sim}5$ kg	0.5~1.5kg	$5^{\sim}15$ kg	$2^{\sim}5$ kg
需密	实耦合	0.05 [~] 2kg	0.05~2kg	0.02~0.5kg	0.5~5kg	0.05 [~] 2kg
试件:	最小厚度:					
密实	耦合	5mm	5mm	1mm	10mm	5mm
硬化	层最小深度	» 0.8mm	» 0.8mm	» 0.2mm	» 1.2mm	» 0.8mm
球头	压痕尺寸					
硬	压痕直径	0.54mm	0.54mm	0.38mm	1.03mm	0.54mm
度						
300				10		
HV		24 µ m	24 µ m	12µm	53µm	24 µ m
时						
硬	压痕直径	0.54mm	0.54mm	0.32mm	0.90mm	0.54mm
度						
600	口点返南	17	17	0	41	17
HV	压限深度	17µm	17µm	8μm	41 µ m	17µm
时						
硬	压痕直径	0.35mm	0.35mm	0.35mm		0.35mm
度						
800						
HV	压痕深度	10 µ m	10 µ m	7 µ m		10 µ m
时						
冲击	装置适用范围	DC 型测量	D+15 型	C 型测量小	G 型测量	E型测
		孔或园柱筒	测量沟槽	轻薄部件及	大厚重及	量硬度
		内;DL 型测	或凹入的	表面硬化	表面较粗	极高材
		量细长窄槽	表面	层。	糙的铸锻	料
		或孔			件	

表 2.1

2.5 标准配置

- ◆LM100 主机
- ◆D 型冲击装置
- ◆高值标准里氏硬度块
- ◆通讯软件光盘
- ◆USB 通讯线
- ◆小支撑环
- ◆尼龙刷
- ◆两节 AA 电池
- ◆操作手册
- ◆仪器箱
- ◆橡胶护套
- 2.6 选配件
- ◆冲击装置: D/C/G/DC/DL/D+15
- ◆里氏硬度块
- ◆蓝牙打印机
- ♦背带
- ◆标准支撑环
- ◆小支撑环
- ◆异型支撑环,见表 2.2

序号	代号	型号	异型支撑环简图	备注		
1	03-03.7	Z10-15		测外圆柱面 R10~R15		
2	03-03.8	Z14.5-30		测外圆柱面 R14.5~R30		
3	03-03.9	Z25-50		测外圆柱面 R25~R50		
4	03-03.10	HZ11-13		测内圆柱面 R11~R13		
5	03-03.11	HZ12.5-17		测内圆柱面 R12.5~R17		
6	03-03.12	HZ16.5-30	O	测内圆柱面 R16.5~R30		
7	03-03.13	K10-15		测外球面 SR10~SR15		
8	03-03.14	K14.5-30		测外球面 SR14.5~SR30		
9	03-03.15	HK11-13		测内球面 SR11~SR13		
10	03-03.16	HK12.5-17	(⊕)∄	测外球面 SR12.5~SR17		
11	03-03.17	HK16.5-30	ð	测外球面 SR16.5~SR30		
				测外圆柱面,半径可调		
12	03-03.18	UN		_{R10~} ∞		
表 2.2						

3. 功能及应用

3.1 技术参数

测量方法:里氏硬度测量方法

硬度制式:里氏(HL),布氏(HB),洛氏B(HRB),洛氏C(HRC),维 氏(HV),肖氏(HS)

测量范围:HLD(200-960) HRC(19.8-68.5) HB(30-651) HV(80-976)

HS (26. 4–99. 5) HRB (13. 5–100)

冲击装置:标配 D,可选 C/G/DC/DL/D+15

示值误差:误差小于+-6HLD(HLD=800),重复性误差 6HLD(HLD=800 时) 测量方向:支持垂直向下,斜下,水平,斜上,垂直向上

适用材料:钢和铸钢,不锈钢,灰铸铁,球墨铸铁,铸铝合金,铜锌合 金,铜锡合金,纯铜,锻钢 分辨率:1HL,1HV,1HB,0.1HRB,0.1HRC,0.1HS 显示:高对比度段码液晶屏(带背光) 数据存储:100组(冲击次数1-7) 通讯接口:蓝牙,USB2.0 打印:热敏式便携打印机,工作安静,可通过蓝牙接口随意打印 工作电源:两节1.5V干电池 工作温度:-10至+50℃ 仪器尺寸:153mm×76mm×37mm(H×W×D) 重量:含电池280g 标准:符合 GB/T 17394-1998,ASTM A956 标准

3.2 应用范围

已安装的机械或永久性组装部件 模具型腔 重型工件 压力容器,汽轮发电机组及其它设备的失效分析 狭小的测试区域 轴承及其它零件生产流水线 金属材料仓库的材料区分

4. 试件的测前准备

4.1 试件要求

4.1.1 试件表面粗糙度要求

表面粗糙度是对试件表面质量的一个重要要求,试件的被测表面应该平整,光滑,没有油污。若过于粗糙,则会引起测量误差。试件表面粗糙 度不应超过下表数值:

7

冲击装置类型	试件表面粗糙度 Ra		
D, DC, DL, D + 15	2 μm		
G	7 μm		
С	0.4 µm		
表 4.1			

4.1.2 试件质量要求

不同种类冲击装置对试件质量要求见下表:

冲击装置类型	试样重量 (kg)			
	需耦合	需稳定	可直接	
D, DC, DL, D + 15	$0.05^{\sim}2.0$	$2.0^{\sim}5.0$	>5.0	
G	$0.5^{\sim}5.0$	5. $0^{\sim}15.0$	>15.0	
С	$0.02^{\sim}0.5$	$0.5^{\sim}1.5$	>1.5	

4.1.3 试件表面硬化层厚度

试件表面硬化层厚度应满足下表:

冲击装置类型	表面硬化层最小厚度(mm)
D, DC, DL, D + 15	0.8
С	0.2
	₹ 4. 3

4.1.4 曲面测试件的要求

当被测表面曲率半径 R 小于 30mm (D、DC、D+15、C、E、DL 型冲击装置)和小于 50mm (G 型冲击装置)的试件在测试时应使用小支承环。

4.2 试件的支撑

◆ 对重型试件,不需要支承;

◆ 对中型试件,必须置于平坦、坚固的平面上,试件必须绝对平稳置 放,不得有任何晃动;

◆ 对轻型试件,必须与坚固的支承体紧密耦合,两耦合表面必须平整、 光滑、耦合剂用量不要太多,测试方向必须垂直于耦合平面;

 ◆ 当试件为大面积板材、长杆、弯曲件时,即使重量、厚度较大仍可 能引起试件变形和失稳,导致测试值不准,故应在测试点的背面加固或 支承。

5. 使用与操作

5.1 显示图示

图 5.1

5.2 键盘图示

5.3 开机

按开机键,屏幕进入测量界面。首次开机显示默认界面,再次开机自动 显示上次关机前设置的参数。

5.4 参数设置

5.4.1 设置测试材料

按材料键,材料代号显示区将循环显示材料代号 0[~]9,代号所代表材料 见下表:

材料代号	测量硬度	测量强度
0	钢和铸钢 Steel and Cast Steel	碳钢 C
1	灰铸铁 GC. IRON	铬镍钢 CrNi
2	球墨铸铁 NC. IRON	铬钼钢 CrMo

3	铸铝合金 C.ALUM	铬钒钢 CrV
4	铜锌合金 BRASS	铬锰硅钢 CrMnSi
5	铜锡合金 BRONZE	超高强度钢 SSST
6	纯铜 COPPER	不锈钢 SST
7	不锈钢 SST	铬镍钼钢 CrNiMo
8	锻钢 Forging Steel	铬钢 Cr
9	合金工具钢 Alloy tool steel	

表 5.1

5.4.2 设置硬度制式

按硬度键可循环显示六种硬度制式和强度,如下图示:

里氏	布氏	维氏	强度	洛氏C	洛氏B	肖氏
-→ HL	► HB	→ HV	<u></u> → σ _b	→ HRC	→ HRB	→ HS -
				图 5.3		

5.4.3 设置探头类型

按探头键可以循环显示探头类型

5.4.4 设置冲击方向

按方向键循环显示冲击方向标识:

5.4.5 设置冲击次数

按次数键,次数显示区将循环显示次数1[~]7,用于标识冲击几次后计算 平均值。

5.4.5 设置冲击次数

11

5.5 进行测试

5.5.1 测试操作

在测量界面下,设置好参数后,可以开始进行测量 ◆加载冲击体:向下推动加载杆,将弹簧压缩到底。见图1 ◆固定位置: 将冲击装置下部的支承环压紧在被测表面。见图 2 ◆释放冲击体: 按动冲击装置上部的释放按钮, 进行测试。此时要求被 测工件、冲击装置、操作者均稳定,并且作用力方向应通过冲击装置轴 线。见图3

图 (1)

图 5.5

◆测试后,界面显示如下,次数显示区显示冲击次数

5.5.2 剔除粗大误差值

在测量过程中,显示平均值之前,若发现测量的数值与标准值偏差过大,

可按删除键删除当前测试值,则该值不存储,也不进行平均值计算,当 前的冲击次数减一。

5.6 显示平均值

一般来说,测试值应该是3~5次测试结果的平均值,在设置冲击次数后, 冲击次数达到所设值,则显示平均值,并点亮平均值标志 Ave。平均值 界面如下图:

图 5.7

5.7 存储和读取数据

5.7.1 存储冲击值

按仪器存储键,开启存储功能并点亮存储标志 S。开启存储功能后,仪 器自动存储冲击值,每组最多存储七个冲击值,一个平均值。存储一组 后存储标志灭。(注:请在当前组测试过程中,平均值显示之前,按存 储键存储该组数据)

5.7.2 读取存储值

长按存储键开启读取模式,并点亮读取标志 R. 见图 5.8. 此时屏幕显示 最近一组存储值的第一个冲击值,按上下键可翻看存储值。查看存储值 后,可按(长按也可)存储键退出读取模式,此时R标志灭。

5.7.3 删除存储值

在读取状态下,按删除键,可删除该组内的所有数据。长按删除键,删 除所有存储值。

5.7.4 存储数据传输

在需要对仪器中的存储数值进行处理或者保存到电脑中时,可将存储的 数值导入到电脑中。具体使用方法参考通讯软件帮助文档。

5.8 蓝牙与打印(选配)

图 5.9

5.9 校准

在长时间使用后,冲击体上的球头会有磨损,当磨损达到一定程度后, 会使测量产生误差,因此设计了校准程序,以标准试块为标准对仪器进 行校准。

开机后同时按上下箭头键,校准标志 **还** 点亮进入校准模式,此时用冲击装置测量试块,可选择测量 1^{~7} 次后取平均值,显示平均值后按上下箭头键将测量值调整到标准值,此时按存储键即可完成校准,此时仪器 会保存校准数据,退出校准模式。如需在校准过程中放弃校准可按关机键。

6. 保养与维护

6.1 清理冲击装置

在长期使用后,应用附带毛刷清洁导向管和冲击体。

- ◆ 拧下支撑环,取出冲击体
- ◆ 将毛刷逆时针方向旋入导向管底部再拉出,重复多次以清洁导管
- ◆ 放回冲击体和支撑环
- ◆ 每次测试后,释放冲击弹簧